
'III. J. Solids SlfllrlrltS Vol. 16. pp. 97-IOS
Perpmon PIt" Ud., 1910. Prinled in Greal Britain

STABILITY OF PARALLEL CRACKS IN SOLIDS
REINFORCED BY BARS

ZDEN~K P. BAiANTt and ABU BAKI{ WAHABt

Department of Civil Engineering. Northwestern University, Evanston. IL 60201. U.S.A.

(Received 2 January 1979; in revised /onn 20 July 1979)

Abstnd-Investigated is the effect of one layer of steel reinforcement on the instability of a system of
parallel equidistant shrinkage or cooling cracks in a concrete halfspace or parallel equidistant cracks due to
bendill& of a beam. The cracks are assumed to propagate aloll& straight lines normal to halfspace surface.
The instability mode consists in the closing of every other crack at the expense of an extension and
increase of the width of the remaining cracks. The previous formulation of stability conditions in terms of
the derivatives of the stress intensity factors with respect to the crack lengths is used and numerical results
are obtained by finite elements. It is found that instabilities of cracks in reinforced concrete do exist and are
profoundly affected by the presence of reinforcement. Assuming a relatively limited length of bond slip
near the crack. one finds that the presence of a reinforcement layer greatly increases the penetration depth
of coolill& or dryill& at which the instability occurs. but does not prevent the instability from occurring
deeper beneath the reinforcement. A small amount of reinforcement. smaller than that required by the
buildill& codes. is sufficient to achieve this effect while a further increase of the reinforcement amount has
relatively little effect.

I. NATURE OF PROBLEM
Reinforced concrete structures under service loads typically contain numerous cracks and their
width has a profound effect on structural performance. The crack width must be kept small,
generally less than 0.3-0.4 mm and preferably 0.1 mm [1], in order to assure that the rough crack
surfaces would be interlocked and capable of transmitting shear stresses, that the fatigue and
damage resulting from cracks would not be excessive, and that certain substances which can
participate in reinforcement corrosion or other modes of deterioration of concrete (chloride
ions, oxygen, water, carbon dioxide, sulphates, etc.) would not penetrate into concrete in
significant amounts.

The average overall tensile strain of reinforced concrete approximately equals the sum of
the widths of all cracks within length L, divided by L Thus, the crack width is approximately in
inverse proportion to the crack spacing. The problem of spacing of cracks in reinforced
COl1crete is a classical one. One well known simple solution gives the spacing of cracks in the
cover of reinforcing bars on the basis of the accumulated bond force and the tensile strength of
the uncracked cover[2].

Recently, crack spacing has been investigated in connection with the cooling of hot rock for
the purpose of geothermal heat extraction[3-6]. Realizing that in certain problems, such as the
cooling cracks in a halfspace, fracture mechanics admits, for the same load, solutions of
different crack spacings and lengths, stability of the crack system must be investigated. This
was first done in [3] in which the conditions of stability of a system of cracks propagating in
known directions were determined by analyzing the second variation of the work needed to
create the cracks, as weU·as by formulating the conditions of adjacent equilibrium (a summary
of this development was given earlier in Ref. [4]). The later work of some other authors on this
problem was commented upon in [3]. The post-critical behavior was investigated in detail in [5]
and the effect of cooling profile was analyzed in [6].

In these works it was found that instability of a system of parallel shrinkage or cooling
cracks in a halfspace may cause some cracks to close and the remaining ones to extend and
widen. This result applies not only for rock, but also for unreinforced concrete, and thus the
question of the effect of the reinforcement on this instability naturally emerges. A study of this
question is the purpose of this study.

The crack problem will be approached by linear fracture mechanics. This approach may
often represent a crude approximation in case of concrete. However, we must resort to fracture
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mechanics out of necessity. because no other consistent approach to the propagation of cracks
in concrete is available at present [7J. The initiation of cracks in reinforced concrete has usually
been treated by a simple concept of strength. However, this is inapplicable to crack propagation
because the stress in the finite element just ahead of the crack due to the given load can be
made arbitrarily large by choosing a sufficiently small element size (7). A consistent and more
realistic approach would be an analysis of the instability due to strain-softening and of strain
localization in a nonlinear material; but this approach is not sufficiently developed at present.

2. REVIEW OF STABILITY CONDITIONS OF CRACK SYSTEM

Consider a brittle elastic solid (unreinforced or reinforced) containing a system of m cracks
of lenth aj(i= 1,2 .... ,m) that propagate in Mode I along known paths. The crack system is
considered to be stable (locally stable) if, for a specified loading and displacement boundary
conditions, work must be supplied to obtain any admissible infinitesimal changes 8a; in the
crack lengths. If this ~ork, AW. can be negative for some admissible 8aj, the crack system is
unstable. If this work is zero, we have a critical state, such that an adjacent equilibrium state of
the crack system exists for the same loading. Thus. the solution is not unique in the critical
state. If the crack length aj is plotted as a function of some loading parameter (e.g. the
penetration depth D of cooling or drying). the equilibrium path of the system exhibits a
bifurcation at the critical state.

The admissible crack extensions 8a; are [3):

for Kj = Kcj :

for 0< Kj < Kcj :

for K; =0:

OO;~O;

OOj=O;
&;::$0,

(1)

where K; = stress intensity factor of the ith crack, and KCj = critical stress intensity factor Kc

(material property) of the ith crack; Kj =lim O'y(21Tr)l/2 for r-+O where r =distance from the
crack tip and O'y =normal stress on the crack extension line ahead of the tip [8]. As shown in
[3], the stability of a crack system is decided by the sign of the second variation 82W of work
W needed to create the cracks;

in which

f > stable (all admissible 8aj)

82W=-2
1t ±Wjj8ai8aj 'l =0 critical (some admissible OOi),-1/-.

<0 unstable (some admissible 8ai)

j
ilK a'Y:=Ki -'+2.;..L!. for i =j and 8aj >0

;pW ilal ilai
"'11=--=

aajilaj ilK
=Kj -aI for all other cases.

al

(2)

(3a)

(3b)

Here 'Yi = K~J2E' = effective surface energy for the creation of crack surfaces[8]; E' = E for
plane stress and E' = E!(1- v2) for plane strain. E = Young's modulus, and v = Poisson ratio. If
the material properties are uniform, il'YiIaai =0 (homogeneous solid). From the relation of Kj to
the release rate of elastic energy it can be shown[3] that

(4)

which means that "'Ij =Wij·
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3. PARALLEL CRACKS IN REINFORCED HALFSPACE

We will restrict attention to a system of parallel equidistant cracks in a reinforced
homogeneous isotropic halfspace undergoing small strain. The cracks are considered orthogonal
to the surface and are initially of equal length, aj =al. Steel reinforcing bars which are
uniformly and densely distributed in a plane parallel to the surface (x =c =const.) and are
normal to the cracks are considered to be embedded in the solid. The situation is typical of
reinforced concrete.

The loading of the halfspace is due to either cooling or shrinkage, such that the profile of the
temperature change T or of the free unrestrained shrinkage strain f.h is the same along each
normal to the halfspace surface. We assume that the cracks produced by this loading propagate
only along straight lines normal to the halfspace surface. Although this assumption agrees with
observations in many cases, a complete investigation would call for allowing nonsymmetric
curved crack paths and adressing also the question of the direction of propagation, which
represents a much more difficult problem.

Owing to symmetry, a crack system in which the cracks remain equally long, ai =alo is
obviously one solution according to fracture mechanics. But is this solution unique, and is it
stable? As shown previously[3], this is not so for the case without reinforcement if the cracks
are sufficiently long relative to their spacing b. It is logical to suspect the same situation when
the reinforcement is present, and to examine the effect of the amount of reinforcement on the
suspected instability. We will investigate instabilities in which every other crack, of length a2,
may become longer than the intermediate cracks al. As shown in [3], the stability conditions for
the parallel crack system with two alternating crack lengths (two interacting cracks) in a
homogeneous solid reduce to the condition:

and

(Sa)

>0. (5b)

It was also shown[3] that the second condition can never be violated (for admissible &Ii) if the
cracks are equally long, a2 =al. The arguments in [3] also hold in presence of reinforcement.
Thus, the first condition (Sa) governs in our case. As shown in [2-5], this condition may become
violated in absence of reinforcement if the crack length-ta-spacing ratio becomes sufficiently
large [3-6]. The criticallength-to-spacing ratio ac:,/b for which condition (Sa) ceases to hold is very
sensitive to the temperature or shrinkage profile [3-6]. For a given temperature profile this ratio
depends only on the nondimensional parameter[5, 6]:

(6)

where b =2h =crack spacing, and Af~h =free shrinkage at the halfspace surface. (It should be
noted that the use of 1- /I instead of 1- 2/1 would be incorrect in case of a halfspace.) The
problem of cooling is equivalent to shrinkage if the temperature profile is the same and if
AE~" =aATO where a =thermal dilatation coefficient and ATo =temperature change at the
surface.

If a critical state is reached, i.e. aK.Jaa2 =0 (at constant all, the corresponding crack length
increments &Ii at constant loading (the eigenvector or the instability mode) are such that[3]:

(7)

Le. every other crack stops growing and the remaining cracks jump ahead at no change of load.
During the subsequent increase of the penetration depth D of cooling or drying, the arrested



100 Z. P. BALANT and A. B. WAHAB

cracks gradually close, i.e. KI becomes less than Kc, while the leading cracks extend in a stable
manner as a function of D[3]. For certain temperature profiles and an unreinforced halfspace
this was shown [3] to lead to a second critical state in which the shorter cracks close, i.e. KI

becomes zero (while K2= Kn a2> at). This critical state is characterized by vanishing of the
determinant (5b) and may be determined from the condition aK2/aal = 0 [5]. At that point the
opening width of the remaining cracks a2 at the surface is approximately twice the width that
would correspond to the case of equally long cracks.

Thus, the crack instability is seen as a phenomenon determining the crack width. In
reinforced concrete, we want to keep the crack width to a minimum, and so we wish the critical
crack length acr at which instability occurs to be as large as possible. Therefore, we will study
the effect of reinforcement on the critical crack length acro We will pay attention only to the
critical state of crack arrest (a2 =al), which is simpler to calculate, because the critical state of
crack closing (the second critical state, K. =0, a2 > al) follows later, and the more unfavorable
bound on crack spacing and width is indicated by the first critical ~tate.

Numerical results have been obtained by the finite element method. A typical finite element
grid used is shown in Fig. I for a domain bounded by the lines of symmetry and extending to a
depth at which the stress are negligible. The crack arrangement with unequal crack lengths after
the first critical state is seen in Fig. 2. Each rectangle of the grid consists of four constant strain
triangular elements and the interior node within the rectangle is eliminated by static conden
sation. The stress intensity factors have been calculated from the difference between the values
of the strain energy contained in the grid for two adjacent crack lengths[9]. The derivatives of
the stress intensity factor, aKi/aa; have been approximated by finite difference expressions
evaluated from the strain energies contained in the grid for three adjacent crack lengths [5, 6]
(see Fig. I). The method of determining the value of D for which K2 =Kr and locating the
critical crack state was described in [5 and 6].

The bond between concrete and reinforcement is not perfect. As is well known, the
reinforcement always slips within a certain distance from a crack which it crosses. This is clear
if we realize that according to the elasticity theory the bond stress at the point where a loaded
bar enters the concrete surface would be infinite. Lacking experimental information, it was
assumed that the bar slips for a distance of about 112 in. from the concrete surface, and if we
assume crack spacing of about to in., there is bond slip for a distance of about 0.1 h.
Accordingly, the reinforcement is assumed to slip without friction in the node at the crack
surface, while in all other nodes the bond is assumed to be perfect, i.e. the displacements of
concrete and of reinforcement are assumed to be equal.

The profile of temperature T or free shrinkage E.h has been considered as the com
plementary error function. This function represents the exact solution of the linear diffusion
equation.
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Fig. I. Finite element grid used.
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Fig. 2. Critical states and growth of shrinkage or cooling cracks for reinforcement close to surface.

The results of the calculations are plotted in Figs. 2-6. The basic material parameters and
the value of free shrinkage ~E'~" at the surface are indicated in the figures; furthermore,
11=0.18. The plots also apply to cooling cracks if ~E'~" is replaced by a~ro. The plots of the
crack length Q2 =QI vs the penetration depth of shrinkage or cooling profile D, normalized with
respect to crack spacing b =2h, are shown in Figs. 2 and 3 for various cross section areas of
reinforcement A. as percentages of spacing 2h (both per unit length in direction z). The same
results are plotted in Figs. 4 and 5 in terms of the ratio of the crack length to penetration depth.
Figures 3 and 5 differ from Figs. 2 and 4 mainly in the depth of the location of reinforcement
(and also in the value of ~E'~,,). The stable path of the system is given by the solid lines and the
unstable path, which cannot be realized for static loading, is given by the dashed lines. Also
shown in the figures are the critical states (bifurcation points of the diagrams). Furthermore, the
crack opening profiles of the cracks when the first critical state is reached are indicated in
Fig. 6.

4. PARAl..LELCRACKS DUETO BENDING MOMENT

Consider a strip (or beam) that is subjected to pure bending and axial deformation, see Fig.
7. The axial strains before cracking, ~E'b' are then linearly distributed. Let D be the distance of
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I'll. 3. Critical states and growth of shrinkage or cooling cracks for reinforcement deeper within the solid.
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the neutral axis from the tensile face and 4Ebo be the value of 4Eb at the surface. The bending
moment and the axial force after cracking are denoted as M and N.

In a reinforced concrete beam subjected to pure bending, there also exist parallel equidistant
cracks normal to beam surface. One purpose of the reinforcement, although not the main one,
is to keep the cracks closely spaced and therefore fine. It is known that the bar size affects the
crack opening in the cover of the bar, but the effect of reinforcement on the crack spacing
deeper under the bar is not known. We will now see what stability consideration indicates for
this problem.. In agreement with observations, we will assume that the bending cracks are
straight and normal to the neutral axis of the beam.

Except for the profile of strain 4Eb and the fact that 4Eb is a uniaxial strain whereas 4EJh is a
volumetric strain, the problem is analogous to the previous one and the same solution
procedure has been used. For convenience of similarity, we consider the crack length as a
fl,lDction of depth D to the neutral axis (Fig. 7), while strain on the surface is kept constant.
Thus, the increasing D actually corresponds to a decreasing curvature and a decreasing bending
moment. The finite element results are plotted in Figs. 7and 8, in which the material properties and
the value of 4Eb are also indicated.

5. OBSERVATIONS FROM NUMERICAL RESULTS

(a) Shrinkage and cooling cracks
1. In a reinforced halfspace subjected to drying or cooling, an instability of the system of

equidistant, parallel and equally long cracks normal to the surface may arise. If it does, every
other crack stops growing and after it closes the width of the remaining cracks doubles.

2. The instability is of the same nature as found previously [2-5] for unreinforced solids.
The length of equally long cracks increases as a function of shrinkage or cooling penetration
depth D, and when a certain critical length acr is reached every other crack stops growing while
the remaining cracks jump ahead at constant D. During the subsequent increase of D, the
arrested cracks gradually close, causing the width of the remaining cracks to double.

3. The presence of reinforcement has a very significant effect on the critical crack length,
ac,.

4. Even a very small amount of reinforcement, such as 0.1% of crack spacing, causes the
critical crack length to increase greatly, even through the effect on the crack width at the point
of reinforcement is relatively small (Fig. 6). On the other hand, an increase of reinforcement
from 0.1% to 1.0% has a much smaller effect and the occurrence of instability deeper inside the
solid cannot be prevented by the reinforcement near the surface.

5. The reinforcement percentage of 0.1% indicated by the stability consideration is less than
one half of that prescribed as a minimum shrinkage and temperature reinforcement by the
American Concrete Institute (ACI) Standard 318 as well as other building codes.
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Fig. 8. Relative length of bending cracks and decline of bending moment with crack length.

6. The foregoing observations (Nos. 4 and 5) correspond, however, to the assumption of a
rather short bond slip length. Otherwise, one may expect that a heavier reinforcement is needed
to stabilize the cracks.

7. If the reinforcement is located at a greater depth, roughly equal to the critical crack
length for the unreinforced solid, the increase of critical length due to reinforcement is about
40%, compared to 60% for a reinforcement located at a 3.5-times smaller depth. Thus, a
reinforcement close to the surface seems to be more effective for suppressing crack instability
near the surface and obtaining densely distributed cracks that extend deeper into the solid.

(b) Bending cracks
Observations numbers 1-3 also hold for bending cracks.

6. DISCUSSION OF INITIAL AND SUBSEQUENT CRACK SPACING

The present calculations do not indicate at which spacing the tensile cracks initially form.
Another physical consideration is needed for this purpose. One such consideration, appropriate
for the initial spacing of cracks as they start at the halfspace surface was made in [5]. This
consideration may apply also to reinforced concrete, but only for cracks that are shoner than
the concrete cover of reinforcement. This case is, however, not of much interest. Rather we
need to know as the initial state the spacing when the cracks just reach up to the reinforcing
bars or slightly beyond them. There exists a well-known physical argument which yields a lower
bound on this spacing; the total tensile force that can be transmitted along segment h from the
steel bars to the concrete cover by the bond stress must be equal to the tensile force resultant
of stress CT == f; acting in the concrete cover, f, being the tensile strength. This leads to a simple,
well-known formula[l].
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What the present stability considerations pertain to is the· subsequent development of the
crack spacing (and, therefore, the crack width) which gets established as the cracks grow well
beyond the reinforcing bars. This determines the spacing of cracks deeper within concrete. This
spacing is certainly of less interest than the spacing of cracks within the cover, but it does affect
the transmission of shear forces across the rough crack surfaces and fatigue or damage due to
crack movements as well as the rates at which various detrimental substances (e.g. salt) could
penetrate deep into concrete.

When every other crack closes, as a result of instability, the remaining open cracks
represent a crack system of the same type as that existing previously; except that the crack
spacing (and width) are now doubled. Thus, the situation may repeat itself. As D further
increases, a critical state of crack arrest may again be reached, after which every other among
these cracks closes and the spacing of the remaining open cracks quadruples, etc.

7. CONCLUSION

Stability of the crack system is a relevant consideration for shrinkage and cooling cracks as
well as bending cracks in reinforced concrete. Assuming a relatively limited bond slip, we find
that the reinforcement has a profound stabilizing effect on the cracks, greatly extending the
critical crack length at which the growth of every other crack gets arrested. This causes the
cracks to become more densely distributed, which in tum causes a reduction of the crack width.

The reinforcement percentage that is required to achieve this is rather small, in all of our
examples less than the value of 0.18%, the minimum required by ACI Code. Thus, one might
feel disappointed that no new requirement to heed in design ensues from our analysis.
Nevertheless, we do achieve some insight into the empirical rules for minimum reinforcement.
Moreover, we find that reinforcement near the surface is incapable of enforcing a close crack
spacing deep inside the solid. This is irrelevant for steel corrosion, but bears on the capability
of shear stress transmission across the cracks inside the solid and the associated stiffness,
dilatancy, ductility and fatigue resistance.
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